Deriving effective mesoscale potentials from atomistic simulations
نویسندگان
چکیده
We demonstrate how an iterative method for potential inversion from distribution functions developed for simple liquid systems can be generalized to polymer systems. It uses the differences in the potentials of mean force between the distribution functions generated from a guessed potential and the true distribution functions to improve the effective potential successively. The optimization algorithm is very powerful: convergence is reached for every trial function in few iterations. As an extensive test case we coarse-grained an atomistic all-atom model of polyisoprene (PI) using a 13:1 reduction of the degrees of freedom. This procedure was performed for PI solutions as well as for a PI melt. Comparisons of the obtained force fields are drawn. They prove that it is not possible to use a single force field for different concentration regimes.
منابع مشابه
Twisted and coiled ultralong multilayer graphene ribbons
The mechanical behavior and properties of multilayer graphene sheets and nanoribbons have been a subject of intensive research in recent years, due to their potential in electronic, structural and thermal applications. Calculations of effective properties range from molecular dynamic simulations to use of structural mechanical continuum models. Here, structural and elastic parameters are obtain...
متن کاملStructure of polyamidoamide dendrimers up to limiting generations: a mesoscale description.
The polyamidoamide (PAMAM) class of dendrimers was one of the first dendrimers synthesized by Tomalia and co-workers at Dow. Since its discovery the PAMAMs have stimulated many discussions on the structure and dynamics of such hyperbranched polymers. Many questions remain open because the huge conformation disorder combined with very similar local symmetries have made it difficult to characteri...
متن کاملMultiscale coarse-grained simulations of ionic liquids: comparison of three approaches to derive effective potentials.
A coarse-grained model, with three sets of effective pair potentials for 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) ionic liquid, is introduced and used to study the structural and dynamical properties over extended length and time scales. Three sets of effective pair potentials between coarse-grained beads are obtained using the Newton Inversion and the Iterative Boltzmann I...
متن کاملAtomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems
This paper estimates the effect of chemical additives like CuO on the interfacial thermal resistance of carbon nanotubes (CNTs) embedded in water. The investigation of thermal properties of CNT nanostructure is carried out using molecular dynamics (MD) simulations. The nanotube was heated to a prescribed temperature, followed by the relaxation of the entire configuration. In the equilibration s...
متن کاملCoarse-grained Intermolecular Potentials Derived from the Effective Fragment Potential: Application to Water, Benzene, and Carbon Tetrachloride
A force matching technique based on previous work by Voth and co-workers is developed and employed to coarse grain intermolecular potentials for three common solvents: carbon tetrachloride, benzene, and water. The accuracy of the force-matching approach is tested by comparing radial distribution functions (RDF) obtained from simulations using the atomistic and coarse-grained potentials. Atomist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 24 13 شماره
صفحات -
تاریخ انتشار 2003